The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release.

نویسندگان

  • Daisuke Kitazawa
  • Yutaka Miyazawa
  • Nobuharu Fujii
  • Atsushi Hoshino
  • Shigeru Iida
  • Eiji Nitasaka
  • Hideyuki Takahashi
چکیده

When the upper part of the main shoot of the Japanese morning glory (Pharbitis nil or Ipomoea nil) is bent down, the axillary bud situated on the uppermost node of the bending region is released from apical dominance and elongates. Here, we demonstrate that this release of axillary buds from apical dominance is gravity regulated. We utilized two agravitropic mutants of morning glory defective in gravisensing cell differentiation, weeping (we) and weeping2 (we2). Bending the main shoots of either we or we2 plants resulted in minimal elongation of their axillary buds. This aberration was genetically linked to the agravitropism phenotype of the mutants, which implied that shoot bending-induced release from apical dominance required gravisensing cells. Previous studies have shown that basipetal translocation of auxin from the apical bud inhibits axillary bud growth, whereas cytokinin promotes axillary bud outgrowth. We therefore compared the roles of auxin and cytokinin in bending- or decapitation-induced axillary bud growth. In the wild-type and we plants, decapitation increased cytokinin levels and reduced auxin response. In contrast, shoot bending did not cause significant changes in either cytokinin level or auxin response, suggesting that the mechanisms underlying gravity- and decapitation-regulated release from apical dominance are distinct and unique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen

Axillary buds (AXBs) of hybrid aspen (Populus tremula×P. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated 1,3-β-glucanases, but it is unknown if GA is al...

متن کامل

Acropetal disappearance of PsAD1 protein in pea axillary buds after the release of apical dominance.

We recently isolated PsAD1 cDNA from pea (Pisum sativum L. cv. Alaska) seedlings, whose mRNA abundantly accumulated in dormant axillary buds and disappeared after decapitation [Madoka and Mori (2000) Plant Cell Physiol. 41: 274]. To further elucidate the function of PsAD1, we investigated the temporal and spatial distribution patterns of PsAD1 protein using Western blot and immunocytochemical a...

متن کامل

Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds.

One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in...

متن کامل

Cytokinin is required for escape but not release from auxin mediated apical dominance

Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by aux...

متن کامل

Changes after Decapitation in Concentrations of Indole-3-Acetic Acid and Abscisic Acid in the Larger Axillary Bud of Phaseolus vulgaris L. cv Tender Green.

Early changes in the concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) were investigated in the larger axillary bud of 2-week-old Phaseolus vulgaris L. cv Tender Green seedlings after removal of the dominant apical bud. Concentrations of these two hormones were measured at 4, 6, 8, 12 and 24 hours following decapitation of the apical bud and its subtending shoot. Quantitation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2008